Nuclear-fallout, a Drosophila protein that cycles from the cytoplasm to the centrosomes, regulates cortical microfilament organization.

نویسندگان

  • W F Rothwell
  • P Fogarty
  • C M Field
  • W Sullivan
چکیده

nuclear fallout (nuf) is a maternal effect mutation that specifically disrupts the cortical syncytial divisions during Drosophila embryogenesis. We show that the nuf gene encodes a highly phosphorylated novel protein of 502 amino acids with C-terminal regions predicted to form coiled-coils. During prophase of the late syncytial divisions, Nuf concentrates at the centrosomes and is generally cytoplasmic throughout the rest of the nuclear cycle. In nuf-derived embryos, the recruitment of actin from caps to furrows during prophase is disrupted. This results in incomplete metaphase furrows specifically in regions distant from the centrosomes. The nuf mutation does not disrupt anillin or peanut recruitment to the metaphase furrows indicating that Nuf is not involved in the signaling of metaphase furrow formation. These results also suggest that anillin and peanut localization are independent of actin localization to the metaphase furrows. nuf also disrupts the initial stages of cellularization and produces disruptions in cellularization furrows similar to those observed in the metaphase furrows. The localization of Nuf to centrosomal regions throughout cellularization suggests that it plays a similar role in the initial formation of both metaphase and cellularization furrows. A model is presented in which Nuf provides a functional link between centrosomes and microfilaments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assembly of yolk spindles in the early Drosophila embryo

The development of the early Drosophila embryo is marked by the separation of two nuclear lineages, yolk and somatic nuclei, each having its own division program despite residing in a common cytoplasm. We show that the failure of nuclear division of the yolk nuclei is a consequence of dysfunction in bipolar spindle organization during mitosis 10 and 11. Yolk spindle organization defects are dir...

متن کامل

Live analysis of free centrosomes in normal and aphidicolin-treated Drosophila embryos

In a number of embryonic systems, centrosomes that have lost their association with the nuclear envelope and spindle maintain their ability to duplicate and induce astral microtubules. To identify additional activities of free centrosomes, we monitored astral microtubule dynamics by injecting living syncytial Drosophila embryos with fluorescently labeled tubulin. Our recordings follow multiple ...

متن کامل

Mars, a Drosophila protein related to vertebrate HURP, is required for the attachment of centrosomes to the mitotic spindle during syncytial nuclear divisions.

The formation of the mitotic spindle is controlled by the microtubule organizing activity of the centrosomes and by the effects of chromatin-associated Ran-GTP on the activities of spindle assembly factors. In this study we show that Mars, a Drosophila protein with sequence similarity to vertebrate hepatoma upregulated protein (HURP), is required for the attachment of the centrosome to the mito...

متن کامل

Distribution of PCNA in Drosophila embryo during nuclear division cycles.

An immunocytochemical method using a specific antibody was employed to detect the proliferating cell nuclear antigen (PCNA) in Drosophila embryos during the first 13 nuclear division cycles. Strong nuclear staining with the anti-PCNA antibody was observed at interphase throughout 13 cycles. Metaphase chromosomes were not stained throughout these cycles. The chromosomal (nuclear) staining reappe...

متن کامل

A genetic screen for suppressors and enhancers of the Drosophila cdk1-cyclin B identifies maternal factors that regulate microtubule and microfilament stability.

Coordination between cell-cycle progression and cytoskeletal dynamics is important for faithful transmission of genetic information. In early Drosophila embryos, increasing maternal cyclin B leads to higher Cdk1-CycB activity, shorter microtubules, and slower nuclear movement during cycles 5-7 and delays in nuclear migration to the cortex at cycle 10. Later during cycle 14 interphase of six cyc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 125 7  شماره 

صفحات  -

تاریخ انتشار 1998